$\frac{BB-6301-43}{BB-6301-43}$ $\frac{BV}{A} = \frac{BV}{B} = B$	ntained in this drawing is the n part or whole without writte	sole prope en permiss	sion of CWS is prohib	Specialist Inc (CWS). vited.							REVISION HISTORY				
$SB-6301-43$ $\boxed{SB-6301-43}$ $\boxed{B-1}$									REV	ECN	DES	SCRIPTION	PV		_
Due to the transmission of transmission o							SB-6301-	13	A		Produ	ction release			
$\frac{ }{ $						-	<u>5D-0501-</u>		-				LO	10/0/1.	-
ItemUnit/SymbolConditionValueTol.Typical Impedance Ω 1 MHzN/ATyp.Typical Impedance Ω 1 0 MHz34Typ.Typical Impedance Ω 10 0 MHz34Typ.Typical Impedance Ω 25 MHz53Typ.Typical Impedance Ω 20 MHz92Typ.International Tecnances Ω 250 MHz92Typ.Typical Impedance Ω 20 NHz92Typ.International Tecnances Ω 20 NHz92Typ.Residual Pha DensityGauss, BN/A1300Typ.Flux DensityGauss, BInitial (B), corsted2500Typ.Curcic temperature Ω π_T > 130 Nom.Residual Flux DensityGauss, BInitial250Typ.Curcic temperature Ω π_T > 130 Nom.Residual Flux Density Ω π_T > 130 Nom.Residual Tochances m $nital$ 250Typ.Immediated 0.375 ± 0.000 9.50 ± 0.25 A (Inter Dianteeri) 0.375 ± 0.000 9.50 ± 0.25 A (Inter Chanteeri) 0.93 ± 0.012 4.75 ± 0.30 LH (Langab) 0.410 ± 0.000 10.40 ± 0.25 Weight 2.20 gImmediatedImmediatedImmediatedWeight 2.20 gImmediatedImmediatedSE 6.201 4.2						that is									
temUnitSymbolConditionValueTot.Typical Impedance Ω 1 MilzN/ATyp.Typical Impedance Ω 5 MilzN/ATyp.Typical Impedance Ω 10 MHz34Typ.Typical Impedance Ω 25 MHz53Typ.Typical Impedance Ω 250 MHz92Typ.Integration of the second o			-												
Typical Impedance Ω 1 MHzN/ATyp.Typical Impedance Ω 5 MHzN/ATyp.Typical Impedance Ω 100 MHz34Typ.Typical Impedance Ω 250 MHz52Typ.Typical Impedance Ω 250 MHz92Typ.Typical Impedance Ω 250 MHz92Typ.Initial Permeability μ_0 Θ B < 10 gauss			Elec	ctrical Specificatio	ns										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Item		Unit/Symbol	Co	ondition	Value	Tol.	_	Г						
$\frac{1}{10000000000000000000000000000000000$	Typical Impedar	ice	Ω	1	MHz	N/A	Тур.					– LH -			
$\frac{1}{\text{Typical Impedance}} \Omega \qquad 25 \text{ MHz} \qquad 53 \qquad \text{Typ.}}{1} \\ \frac{1}{\text{Typical Impedance}} \Omega \qquad 100 \text{ MHz} \qquad 80 \qquad \text{Typ.}}{1} \\ \frac{1}{\text{Typical Impedance}} \Omega \qquad 250 \text{ MHz} \qquad 92 \qquad \text{Typ.}}{1} \\ \frac{1}{\text{Initial Permeability}} \qquad \mu_0 \qquad \& B < 10 \text{ gauss} \qquad 800 \qquad \text{ Nom.}}{1} \\ \frac{1}{\text{Tempedalling}} \Psi_0 \qquad \& B < 10 \text{ gauss} \qquad 800 \qquad \text{ Nom.}}{1} \\ \frac{1}{\text{Tempedalling}} \Psi_0 \qquad \& B < 10 \text{ gauss} \qquad 800 \qquad \text{ Nom.}}{1} \\ \frac{1}{\text{Tempedalling}} \Psi_0 \qquad \& B < 10 \text{ gauss} \qquad 800 \qquad \text{ Nom.}}{1} \\ \frac{1}{\text{Tempedalling}} \Psi_0 \qquad \& B < 10 \text{ gauss} \qquad 800 \qquad \text{ Nom.}}{1} \\ \frac{1}{\text{Tempedalling}} \Psi_0 \qquad \& B < 10 \text{ gauss} \qquad 800 \qquad \text{ Nom.}}{1} \\ \frac{1}{\text{Residual Flux Density}} \text{ Gauss, B} \qquad \text{ Initial (B), oersted} \qquad 0.45 \qquad \text{ Typ.}}{1} \\ \frac{1}{\text{Flux Density}} \text{ Gauss, B} \qquad \text{ Initial (B), oersted} \qquad 10 \qquad \text{ Typ.}}{1} \\ \frac{1}{\text{Curic temperature}} @ C \qquad T_c \qquad >130 \qquad \text{ Nom.}}{1} \\ \frac{1}{\text{Residual Flux Density}} \text{ Gauss, H} \qquad @ \text{ Frequency} \qquad 1 \qquad \text{ Typ.}}{1} \\ \frac{1}{\text{Loss Factor}} 10^6, \tan \delta/\mu \qquad \text{ Initial} \qquad 250 \qquad \text{ Typ.}}{1} \\ \frac{1}{\text{Mide}} \frac{1}{\text{Mid}} \frac{1}{250} \qquad \text{ Typ.}}{1} \\ \frac{1}{\text{Mide}} \frac{1}{\text{Mid}} \frac{1}{250} \qquad \frac{1}{\text{Typ.}} \\ \frac{1}{\text{Mide}} \frac{1}{10} $	Typical Impedar	ice	Ω	5	MHz	N/A	Тур.			.				I.	
$\frac{1}{\text{Typical Impedance}} \Omega 100 \text{ MHz} 80 \text{Typ.} \\ \hline \text{Typical Impedance} \Omega 250 \text{ MHz} 92 \text{Typ.} \\ \hline \text{Initial Permeability} \mu_0 @ \text{B} < 10 \text{ gauss} 800 \text{Nom.} \\ \hline \text{Temp. Coeff. Of initial} \%, \ ^{\circ}C 20 - 70 \ ^{\circ}C 1.25 \text{Typ.} \\ \hline \text{Coercive Force} H_{\cdot} \text{cersted} 0.45 \text{Typ.} \\ \hline \text{Residual Flux Density} \text{Gauss, B} \text{Initial (B), cersted} 2900 \text{Typ.} \\ \hline \text{Fux Density} \text{Gauss, B} \text{Initial (B), cersted} 2900 \text{Typ.} \\ \hline \text{Gauss, H} @ \text{Fried Strength (H), cersted} 10 \text{Typ.} \\ \hline \text{Curie temperature} ^{\circ}C T_{\cdot} > 130 \text{Nom.} \\ \hline \text{Resistivity} \Omega \text{ cm. } \rho @ \text{Field Strength (H), cersted} 10 \text{Typ.} \\ \hline \text{Loss Factor} 10^{\circ} \text{ tamb} / \mu \text{Initial} 250 \text{Typ.} \\ \hline \text{Loss Factor} 10^{\circ} \text{ tamb} / \mu \text{Initial} 250 \text{Typ.} \\ \hline \text{MHz} @ \text{Frequency} 1 \text{Typ.} \\ \hline \hline \text{Dimensional Tolerances} \\ \hline \text{Minder Diameter)} 0.193 \pm 0.012 4.75 \pm 0.30 \\ \hline \text{LH (Length)} 0.410 \pm 0.009 10.40 \pm 0.25 \\ \hline \text{Weight 2.20g} \text{Mider Diameter)} 0.193 \pm 0.012 4.75 \pm 0.30 \\ \hline \text{Hill (Length)} 0.410 \pm 0.009 10.40 \pm 0.25 \\ \hline \text{Weight 2.20g} \text{Mider Diameter)} 0.193 \text{Mider Diameter)} 0.193 \text{Mider Diameter)} 0.40 \text{Mider Diameter)} 0.40 \text{Mider Diameter)} 0.40 \text{Mider Diameter)} 0.193 \pm 0.012 4.75 \pm 0.30 \\ \hline \text{Hill (Length)} 0.410 \pm 0.009 10.40 \pm 0.25 \\ \hline \text{Weight 2.20g} \text{Mider Diameter)} 0.193 \text{Mider Diameter)} 0.410 \text{Mider Diameter)} 0.410 \text{Mider Diameter)} 0.400 Mider Mide$	Typical Impedan	ice	Ω	10) MHz	34	Тур.			\square	∇	//////		t l	
$\frac{ Typical Impedance}{Typical Impedance} \Omega = 100 \text{ MHz} = 80 = Typ.$ $\frac{ Typical Impedance}{Typical Impedance} \Omega = 250 \text{ MHz} = 92 = Typ.$ $\frac{ Typical Impedance}{Termp. Coff. 0 \text{ initial}} = 96, ^{\circ}C = 20.70 \text{ °C} = 1.25 = Typ.$ $\frac{ Typical Corrective Force}{Permeability} = 96, ^{\circ}C = 20.70 \text{ °C} = 1.25 = Typ.$ $\frac{ Typical Corrective Force}{Residual Flux Density} = Gauss, B = Initial (B), corsted = 0.45 = Typ.$ $\frac{ Typical Corrective Force}{Residual Flux Density} = Gauss, B = Initial (B), corsted = 0.05 = Typ.$ $\frac{ Typical Corrective Force}{Residual Flux Density} = Gauss, B = Initial (B), corsted = 10 = Typ.$ $\frac{ Typical Corrective Force}{Residual Flux Density} = Gauss, B = Initial (B), corsted = 10 = Typ.$ $\frac{ Typical Corrective Force}{Residual Flux Density} = \frac{ Typical Corrective Force}{Residual Flux Density} = Typical Corrective F$	Typical Impedar	ice	Ω	2:	5 MHz	53	Тур.	_	ĹĹ	₽↓				A	
Initial Permeability μ_0 $\Theta B < 10 gauss800Non.Temp. Coeff. Of initialPermeability\psi_6, ^{\circ}C20 - 70 °C1.25Typ.Coercive ForceH_cersted0.45Typ.Residual Flux DensityGauss, BInitial (D). oersted2000Typ.Flux DensityGauss, BInitial (D). oersted100Typ.Curie temperature°CT_c>130Non.Residuity\Omega cm, \rho\Theta Field Strength10°Typ.Loss Factor10°, tm8/ \muInitial250Typ.MHz\Theta Frequency1Typ.Statistivity\Omega cm, \rho\Theta Field Strength10°B (Outer Diameter)0.375\pm 0.0099.50\pm 0.25A (Inner Diameter)0.193\pm 0.0124.75\pm 0.30LH (Length)0.410\pm 0.00910.40\pm 0.25Weight 2.20 guuuuWeight 2.20 guuuState for Rest.\frac{100}{10.40}\frac{100}{10.40}\frac{100}{10.25}State for Rest.\frac{100}{10.40}\frac{100}{10.40}\frac{1000}{10.40}\frac{1000}{10.40}State for Rest.\frac{10000}{10.40}\frac{10000}{10.40}\frac{10000}{10.40}State for Rest.\frac{100000}{10.40}\frac{100000}{10.40}\frac{100000}{10.40}State for Rest.\frac{100000}{10.40}\frac{100000}{10.40}\frac{100000}{10.40}State for Rest.\frac{100000}{10.40}\frac{1000000}{10.40}$			Ω	100 MHz		80	Тур.		$\langle \rangle$			//////	77 –		
Temp. Coeff. Of initial Permeability%, *C20 - 70 °C1.25Typ. $Residual Flux DensityGauss, BrN/A1300Typ.Residual Flux DensityGauss, BrN/A1300Typ.Flux DensityGauss, BInitial (B), cersted2900Typ.Gauss, H@ Field Strength (H), cersted10Typ.Curie temperature°CT.>130Nom.Resistivity\Omega cm, \rho@ Field Strength10'sTyp.Loss Factor10's, tan8/µInitial250Typ.MHz@ Frequency1Typ.NHz@ Frequency1Typ.B (Outer Diameter)0.375\pm 0.0099.50\pm 0.25A (Inner Diameter)0.193\pm 0.0124.75\pm 0.30LH (Length)0.410\pm 0.00910.40\pm 0.25Weight 2.20 gUMESS OTHERWISE SPECTEDSIONDate:WWW.coll/WS.comWWW.coll/WS.comDIDENSING Rest RestMaterial 43, NiZnDIDENSING Rest RestMaterial 43, NiZnDIDENSING Rest RestMaterial 43, NiZnDIDENSING Rest RestMaterial 43, NiZnDIDENSING Rest RestGenerative RestWeight 2.20 gDid10/08/13SEEMaterial 43, NiZnDIDENSING Rest RestGenerative RestMight RestGenerative RestSet RestSEESet RestSEESet RestSEESet RestGenerative RestSet Rest<$	Typical Impedar	ice	Ω	25	0 MHz	92	Тур.					///////////////////////////////////////		Ī	
$\overline{Permeability}$ $\overline{V_{9}}, \overline{U}$ $20 \cdot 10^{\circ}C$ 1.25 $11p$ $\overline{Coercive Force}$ H $\overline{Oersted}$ 0.45 \overline{Typ} $\overline{Residual Flux Density}$ $\overline{Gauss, B}$ N/A 1300 \overline{Typ} $\overline{Flux Density}$ $\overline{Gauss, B}$ N/A 1300 \overline{Typ} $\overline{Flux Density}$ $\overline{Gauss, B}$ N/A 1300 \overline{Typ} $\overline{Curie temperature}$ $^{\circ}C$ T_c > 130 $Nom.$ $\overline{Resistivity}$ $\Omega cm, \rho$ $\overline{Crectargenet}$ 10° \overline{Typ} \overline{MHz} \overline{CP} $\overline{Perequency}$ 1 \overline{Typ} \overline{MHz} $\overline{Perequency}$ 1 \overline{Typ} \overline{NHz} \overline{Oll} $\overline{9.50}$ ± 0.25 $A (Inner Diameter)$ 0.193 ± 0.012 4.75 ± 0.30 $LH (Length)$ 0.410 ± 0.009 10.40 ± 0.25 $\overline{Weight 2.20g}$ $\overline{Verter Nergenet Weight 2.20g}$ $Verter Nergenet Weig$	Initial Permeabili	ty	μ ₀	@ B	< 10 gauss	800	Nom.							·	
Residual Flux DensityGauss, BrN/A1300Typ.Flux DensityGauss, BInitial (B), oersted2900Typ.Curie temperature $^{\circ}$ CT_c>130Nom.Resistivity Ω cm, ρ @ Field Strength10 $^{\circ}$ Typ.Loss Factor10 $^{\circ}$, tan δ / μ Initial250Typ.MHz@ Frequency1Typ.Dimensional TolerancesPARTSLISTMineterio0.375 \pm 0.0099.50 \pm 0.25A (Inner Diameter)0.193 \pm 0.0124.75 \pm 0.30LH (Length)0.410 \pm 0.00910.40 \pm 0.25Weight 2.20 gu10.0910.40 \pm 0.25Weight 2.20 gu10.0910.40 \pm 0.25State of Mineterio0.193 is 0.0124.75 \pm 0.30LH (Length)0.410 \pm 0.00910.40 \pm 0.25Weight 2.20 guuuSEE [WR. M.State of Mineterio0.183 is 0.012 \pm 0.25USA is 0.0000 ANDWeight 2.20 guuuuState of Mineterio0.183 is 0.012 \pm 0.25USA is 0.0000 ANDWeight 2.20 guuuuState of Mineterio0.183 is 0.012 \pm 0.25Mineterial 43, NiZnUSA is 0.0000 ANDUSA is 0.0000 ANDState of Mineterio0.018 is 0.0000 ANDUSA is 0.0000 ANDState of Mineterio0.018 is 0.0000 ANDUSA is 0.0000 ANDState		itial	%, °C	20	20 - 70 °C		Тур.	FROM	NT VIE	EW		SIDE VIEW			
Flux DensityGauss, BInitial (B), oersted2900Typ.Gauss, H@ Field Strength (H), oersted10Typ.Curie temperature°CT.>130Nom.Resistivity Ω cm, ρ @ Field Strength10*Typ.Loss Factor10*, tank / μ Initial250Typ.MHz@ Frequency1Typ.Dimensional Tolerances $\frac{10^{\circ}}{10^{\circ}}$ tank / μ DESCRIPTIONDimensional TolerancesMFG. P/NDESCRIPTIONDimensional Tolerances $\frac{10^{\circ}}{10^{\circ}}$ $\frac{10^{\circ}}{250}$ $\frac{10^{\circ}}{250}$ A (Inner Diameter)0.375 \pm 0.0124.75 \pm 0.30LH (Length)0.410 \pm 0.00910.40 \pm 0.25Weight 2.20 gUnless or HERWISE SPECIFIESDIMEN EORInitial 10/8/13DURINGE NOVERSTL10/8/13The second seco	Coercive Force		Hc	(persted	0.45	Тур.								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Residual Flux Density		Gauss, Br		N/A		Тур.								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Flux Density		Gauss, B	Initial			Тур.	For ad	ditic	onal deta	il, specif	fications an	d cha	rts se	99
Image: constraint of the constr			Gauss, H	@ Field Stre			Тур.	http://ww	ww.b	ytemark.c	om/produc	ts/ferrite_matl	.htm		
Loss Factor 10 ⁻⁶ , tanð / μ Initial 250 Typ. MHz @ Frequency 1 Typ. Dimensional Tolerances PARTS LIST in tol. mm tol. B (Outer Diameter) 0.375 ± 0.009 9.50 ± 0.25 A (Inner Diameter) 0.193 ± 0.012 4.75 ± 0.30 LH (Length) 0.410 ± 0.009 10.40 ± 0.25 Weight 2.20 g L LI 10/8/13 THE: SZE [PWc. NO. SZE [PWc. NO. SZE [PWc. NO. SZE [PWc. NO. SZE [PWc. NO. SZE [PWc. NO.	Curie temperature		°C		T _c		Nom.								
MHz @ Frequency 1 Typ. Dimensional Tolerances Dimensional Tolerances PARTS LIST MIR Mira Mira<	Resistivity		$\Omega \text{ cm, }\rho$	@ Fie	@ Field Strength		Тур.								
Image: constraint of the	Loss Factor		$10^{\text{-6}}\text{,}$ tan& / μ		Initial		Тур.								
Dimensional Tolerances Description in tol. mm tol. PARTS LIST B (Outer Diameter) 0.375 ± 0.009 9.50 ± 0.25 Solution And the second and the secon			MHz	@ I	@ Frequency		Тур.								
Image:	Dimensional Tolerances									IDENT	MFG. P/N			N	_
B (Outer Diameter) 0.375 ± 0.009 9.50 ± 0.25 A (Inner Diameter) 0.193 ± 0.012 4.75 ± 0.30 LH (Length) 0.410 ± 0.009 10.40 ± 0.25 Weight 2.20 g Sign Date www.cosbytemork.com 353 West Grove Ave. 92865 Source Park Sign Date www.cosbytemork.com 353 West Grove Ave. 92865 Source Park Sign Date www.cosbytemork.com 353 West Grove Ave. 92865 Multiple Park Boold ± 0.30 ± 0.30 ± 0.30 ± 0.30 ± 0.30 EO 10/8/13 The: Ferrite Shielding Beau Weight 2.20 g Control Park State Park S			in	tol.	tol. mm		tol.							BYTE	
Dimensioning and A (Inner Diameter) 0.193 ± 0.012 4.75 ± 0.30 LH (Length) 0.410 ± 0.009 10.40 ± 0.25 Weight 2.20 g Weight 2.20 g Size Dimensioning and Dimensioning a	B (Outer Diameter)	(_		UNLESS OTHERWISE SPECIFIED						ove Ave	e.
LH (Length) 0.410 ± 0.009 10.40 ± 0.25 Weight 2.20 g Image: Construction of the state	· · · ·							DIMENSIONING AND	DDAW	N					-
Weight 2.20 g TOLERANCE INCHES: JL $IO/8/13$ INTALETTAL 4.5, INIZIT Weight 2.20 g TOLERANCE MENES: JL $IO/8/13$ SIZE DWG. NO. SIZE 107.0XX=±.035 $XX=\pm 127$ $XX=\pm 127$ $XX=\pm 127$ $IO/8/13$ SIZE DWG. NO.	· · · ·							ALL DIMENSIONS ARE IN INCHE AND [MILIMETERS].	s checke						1(
weight 2.20 g TOLERANCE METRICS: 0.0 SIZE DWG. NO. JXX=±.127 JXX=±.38 ≤=±0'30' APPR. II 10/8/13 D SIZE SIZE DWG. NO.				- 0.009	10.40		- 0.23	TOLERANCE INCHES: .XXX=±.005 .XX=±.015 ⊄=±0	30' ENGR		8/13		al 43, N	1Zn	
ANGLE PROJECTION $\oplus \textcircled{1}$ JL $10/013$ B $SB-0301-45$	Weight 2.20 g							TOLERANCE METRICS: .XXX=±.127 .XX=±.38 <₹=±0			SIZE DWG. N		301 / 2		

EP FORM0005 REV 3 10/01

CAD-FILE: