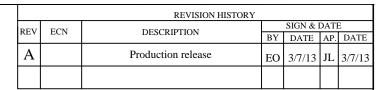
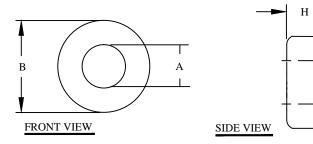
T50-26

Features

Good results of general power conversion and line filter administration. Applicable (at <50kHz) for Power Factor Correction Chokes, DC Chokes and lower Et/N. Also applies for 60 Hz differential-mode EMI Line Chokes, and light dimmer chokes.

Electrical Specifications								
Item	Unit/Symbol	Condition	Value	Tol.				
A_{L}	nH/N ²	AC flux density of 10 gauss (1 mT) @10 kHz	33.0	± 10%				
Le	cm	N/A	3.19	Тур.				
Ae	cm ²	N/A	0.112	Тур.				
V _e	cm ³	N/A	0.358	Тур.				
Density	g/cm ³	N/A	7.0	Тур.				
Permeability μ_0		N/A	75	± 10%				
Permeability with DC BIAS %μ ₀ , μ ₀ effective		HDC = 50 Oerstesd	51, 38.3	Тур.				
Temp. Coef. of Permeability	+ppm/°C	N/A	825	Тур.				
Coef. of Lin. Expansion	+ppm/°C	N/A	12	Тур.				
Thermal Conductivity mW/cm-°C		N/A	42	Тур.				


$$Temperature \ Rise: \Delta T(^{\circ}C) = \left[\frac{Total \ Power \ Dissipation \ (milliwatts)}{Surface \ Area \ (cm^{2})}\right]^{0.833}$$


Required turns =
$$\left[\frac{\text{desired L (nH)}}{A_L \left(\frac{nH}{N^2}\right)}\right]^{\frac{1}{2}}$$

Peak AC Flux Density:
$$B_{pk} = \frac{E_{avg}10^8}{4ANf}$$

Magnetizing Force:
$$H = \frac{0.4\pi \text{ N I}}{\ell}$$

Core Loss in mW/cm ³ (extrapolated data from high frequency testing)							
Frequency	60 Hz	1kHz	10kHz	50kHz	100kHz	500kHz	
Condition	@ 5000G	@ 1500G	@ 500G	@ 225G	@ 140G	@ 50G	
Value	32	60	75	89	83	139	

Case Dimensional Tolerances							
	in	tol.	mm	tol.			
B (Outer Diameter)	0.500	0.020	12.70	0.51			
A (Inner Diameter)	0.303	0.020	7.70	0.51			
H (Height)	0.190	0.020	4.83	0.51			
Weight 2.51 g							

For additional detail, specifications and charts see:

http://www.bytemark.com/products/IPCores index.html

ℓ = Mean Magnetic Path (cm)			CODE	1						ІТЕМ
A = Cross-sectional area (cm2)		IDENT MFG		G. P/N		DESCRIPTION		NO.		
f = frequency (hertz)			PARTS LIST						,	
B _{pk} = Gauss (G)		AUTOC	AUTOCAD X		CW	VSBYTEMARK				
		SOLID	WORKS		www.coilws.com			est Grove Ave. Orange, C		
	UNLESS OTHERWISE SPECIFIED	SIGN		DATE	www	www.cwsbytemark.com		92865		igo, cri.
	DIMENSIONING AND TOLERANCE PER ANSI Y14.5M	DRAWN	ЕО	3/7/13	TITLE:	ron I	Powder Core Material Mix			26
	ALL DIMENSIONS ARE IN INCHES AND [MILIMETERS]. TOLERANCE INCHES: .XXX=±.005 .XX=±.015		JL	3/7/13	,	1011 1	Yellow/White			. 20,
			JL	3/7/13	SIZE II	WA NA				REV
.XXX=±.127 .XX=±.38 <=±0'3 ANGLE PROJECTION ⊕ €	APPR.	JL	3/7/13	B	MG. NO.	T5	0-26		A	
DO NOT SCALE DRAWING					SCALE		N/A		SHEET 1 O	F 1
							048 511	_		

EP FORM0005 REV 3 10/01 CAD-FILE:

L = inductancenH = nanohenries

H = oersteds (Oe) N = Number of turns

I = Current (amperes)